
INFOGRAPHIC

WEEKS TO PROVISION

See CloudBolt in Action!
REQUEST A DEMO

Intelligent WayOld Way

DAYS/WEEKS MINUTES

REACTIVE PROACTIVE

NUMEROUS
TOOLS

SINGLE
INTERFACE

A New Way for CI/CD
Standardized infrastructure, continuously tested

CloudBolt's hybrid cloud platform for enterprises helps IT admins provide
simple to very complex IT resources to end users from a single portal.

1. FreeFormDynamics Survey
2. CircleCi blog

© CloudBolt Software. All rights reserved

Traditionally, development of applications involved siloed workloads with numerous teams working on
numerous parts of development, only to merge them later to create a complete product. This often leads to

“merge hell” and creates numerous difficulties as well as inefficiencies that CI/CD (continuous
integration/continuous deployment) attempts to solve.

What is CI/CD?

CI is the practice of integrating code into a
shared repository (e.g. Github) and building/
testing each change automatically, as early as
possible - usually several times a day.

Continuous Delivery enables software to be
released to production at any time, often by
automatically pushing changes to a staging
system.

Continuous Integration

Continuous Delivery

Continuous Deployment goes further and
pushes changes to production automatically.

Continuous Deployment

Promote Developers and IT
Operations to work together,

breaking silos

Identify bottlenecks proactively
to increase productivity

Luckily, there’s now a new way to CI/CD that addresses the key challenges for all steps of the process.
Below is how the new, intelligent way of implementing CI/CD compares to the old way.

Developed for technical admins only (~20% of users)

Lacks flexibility to orchestrate various steps

Does not provide extensibility to add modern

technologies easily

Manual isolated test on the storage, networks, VM

instances is a reactive process

Constant patches and upgrades make isolating the

process difficult

Using change management and documentation or

managing multiple tools has a steep learning curve

Proactively test your Continuous Integration (CI)

environment end-to-end through automation

Automatically identify variance that would have

stopped the CI process (password change, storage

capacity available, etc.)

Get notified hours or days in advance if something

isn’t ready

Deploy resources in minutes

Easily define how the environment will be

orchestrated and who can provision resources

Give developers more visibility and control over their

testing environments

Does not scale as fast when the target

environments change

Provides only limited enviroment visibility

Builds take 30 minutes and the whole team is wasting
time queuing.

MANUAL TESTING
Testing requires multiple tools and constant attention.

DIFFICULT TO IMPLEMENT
Requires numerous tools and hours of configuration in

order to be efficient and secure.

MINUTES TO PROVISION
Builds take minutes without wasted time.

AUTOMATED TESTING
Testing is proactive and automatic.

EASY TO IMPLEMENT AND RUN
Provides a single interface through which (via UI, API)
pipelines are created, recreated and destroyed. CIT allows
a secure and frictionless process.

•

•

•

•

•

Time/labor intensive

Requires extensive knowledge/expertise

•

•

•

•

•

•

•

•

•

•

•

Faster app/software delivery,
improved innovation and

recovery process

Old Way vs The Intelligent Way

CI/CD Can Still Fall Short

CI/CD - A NEW WAY

CI/CD KEY BENEFITS

OLD WAY INTELLIGENT WAY

DEV

THE BOTTOM LINE

VS

VS

VS

While CI/CD offers tremendous benefits and is quickly becoming the standard operating procedure for many companies,
it’s not without its challenges. Aside from the common challenges of implementing a completely new system (training,

upfront costs, fine tuning, etc.), even the most well implemented CI/CD pipelines can have shortcomings.

CI CD

CIT
CI CD

Developers currently take days or weeks to ready the technology stack
(storage, network, hypervisor, disaster recovery solutions, etc.) required for
their testing environment, thus causing delays in application development
and deployment.

SLOW RESOURCE PROVISIONING

Test environments are not as reliable as expected. They might fail
often because of change of state in storage, network and server

configurations, passwords, VM (Virtual Machine) images, etc. One test
failure means the entire test process needs to be restarted; invested

effort, time, and money is being wasted.

LACK OF RELIABLE TESTING ENVIRONMENTS

SELF-SERVICE IT FAILURE RATE

Only 24% of end users have
been using self-service IT1

Topic branches have an
average failure rate of 31%2

TESTING

CloudBolt Blueprints

Continuous Infrastructure
Testing

Gen 1 Cloud Management Platform

Lengthy, Inconsistent Builds Fast, Standardized Builds

Scripts or
Infrastructure as Code (IaC)

Manual Machine Builds

Manual Testing

https://www.cloudbolt.io/demo/

